RadioPathomics Artificial Intelligence Model to Predict nCRT Response in Locally Advanced Rectal Cancer
-
- STATUS
- Recruiting
-
- participants needed
- 100
-
- sponsor
- Sixth Affiliated Hospital, Sun Yat-sen University
Summary
In this study, investigators utilize a radiopathomics integrated Artificial Intelligence (AI) supportive system to predict tumor response to neoadjuvant chemoradiotherapy (nCRT) before its administration for patients with locally advanced rectal cancer (LARC). By the system, whether the participants achieve the pathologic complete response (pCR) will be identified based on the radiopathomics features extracted from the pre-nCRT Magnetic Resonance Imaging (MRI) and biopsy images. The predictive power to discriminate the pCR individuals from non-pCR patients, will be validated in this multicenter, prospective clinical study.
Description
This is a multicenter, prospective, observational clinical study for validation of a radiopathomics artificial intelligence (AI) system. Patients who have been pathologically diagnosed as rectal adenocarcinoma and defined as clinical II-III staging without distant metastasis by enhanced Magnetic Resonance Imaging (MRI) will be enrolled from the Sixth Affiliated Hospital of Sun Yat-sen University, the Third Affiliated Hospital of Kunming Medical College and Sir Run Run Shaw Hospital Affiliated by Zhejiang University School of Medicine. All participants should follow a very standard treatment protocol, including of concurrent neoadjuvant chemoradiotherapy (nCRT), total mesorectum excision (TME) surgery and adjuvant chemotherapy. The MRI and biopsy examination should be completed before the nCRT and the images will be subjected to the manual delineation of the tumor regions of interest (ROI) by experienced radiologists and pathologists. Subsequently, the outlined MRI and biopsy slides images will be employed to the radiopathomics AI system to generate the predicted response ("predicted pathologic complete response (pCR)" vs. "predicted non-pCR") of individual patient, whereas the actual response ("pathologic confirmed as pCR" vs. "pathologic confirmed as non-pCR") will be diagnosed at surgery excised specimen. Through comparisons of the predicted responses and true pathologic responses, investigators calculate the prediction accuracy, specificity, sensitivity as well as the Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) curves. This study is aimed to validate the high accuracy and robustness of the radiopathomics AI system for identifying pCR candidates from non-pCR individuals before nCRT which will facilitate further precision therapy for patients with locally advanced rectal cancer.
Details
Condition | Colorectal Cancer, Colorectal Cancer, Rectal Cancer, Rectal Cancer |
---|---|
Age | 18years - 75years |
Clinical Study Identifier | NCT04271657 |
Sponsor | Sixth Affiliated Hospital, Sun Yat-sen University |
Last Modified on | 19 February 2024 |
How to participate?
,
You have contacted , on
Your message has been sent to the study team at ,
What happens next?
- You can expect the study team to contact you via email or phone in the next few days.
- Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreSimilar trials to consider
Browse trials for
Not finding what you're looking for?
Sign up as a volunteer to stay informed
Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteerStudy AnnotationsStudy Notes
Notes added here are public and can be viewed by anyone. Notes added here are only available to you and those who you share with.
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Add a private note
- Select a piece of text from the left.
- Add notes visible only to you.
- Send it to people through a passcode protected link.
Study Definition
WikipediaAdd a private note
- Select a piece of text.
- Add notes visible only to you.
- Send it to people through a passcode protected link.