Diffusion MRI for Head and Neck Cancer
-
- STATUS
- Recruiting
-
- participants needed
- 60
-
- sponsor
- NYU Langone Health
Summary
The proposed study is to investigate the feasibility of using quantitative diffusion MRI (dMRI) methods for accurate and comprehensive assessment of treatment response. dMRI is a powerful tool to probe treatment-induced change in tumors. It is a unique in vivo imaging technique sensitive to cellular microstructures at the scale of water diffusion length on the order of a few microns. Previous studies have shown that both diffusion coefficient D and diffusional kurtosis coefficient K are promising imaging markers of (i) cell viability which can be used for evaluation of early treatment response. However, it is often underappreciated that these dMRI metrics are not fixed constants, but rather functions of the diffusion time t, D(t) and K(t); their t-dependency is determined by tissue properties, such as cell size and membrane permeability of tissue. D(t) and K(t) of tumors can vary substantially depending on t in the range of diffusion times (30-100 ms) typically used in clinical scan.
Description
This study will investigate the t-dependency of dMRI over a range of diffusion times (30-500 ms) to determine an optimal diffusion time for treatment response assessment when only one diffusion time needs to be used, particularly in routine clinical studies. Furthermore, the data with multiple diffusion times will also be used to measure the water exchange time of cancer cells. Exchange time has been studied using Dynamic Contrast Enhanced (DCE) MRI by multiple groups including ours, and has been suggested as a marker of (ii) cellular metabolism that regulates the ATP-dependent ion channels co-transporting water molecules. The study will measure with dMRI, without using a contrast agent. The investigators also demonstrated that Intra-Voxel Incoherent Motion (IVIM) MRI metrics (pseudo diffusivity, Dp; perfusion fraction, fp), from multiple b-values at a fixed diffusion time, can be used to assess the perfusion status of tumor and they are also associated with tumor interstitial fluid pressure. The IVIM effect has been observed in various cancer types (33-39) and animal tumor models. The product fp*Dp - a quantity including both blood volume and velocity information - is considered as a parameter analogous to (iii) perfusion flow .
Details
Condition | head and neck cancer, head and neck cancer |
---|---|
Age | 18years - 100years |
Treatment | PET/MRI with FDG, MRI scan without contrast, MRI with gadolinium |
Clinical Study Identifier | NCT04251481 |
Sponsor | NYU Langone Health |
Last Modified on | 19 February 2024 |
How to participate?
,
You have contacted , on
Your message has been sent to the study team at ,
What happens next?
- You can expect the study team to contact you via email or phone in the next few days.
- Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreSimilar trials to consider
Browse trials for
Not finding what you're looking for?
Sign up as a volunteer to stay informed
Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteerStudy AnnotationsStudy Notes
Notes added here are public and can be viewed by anyone. Notes added here are only available to you and those who you share with.
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Add a private note
- Select a piece of text from the left.
- Add notes visible only to you.
- Send it to people through a passcode protected link.
Study Definition
WikipediaAdd a private note
- Select a piece of text.
- Add notes visible only to you.
- Send it to people through a passcode protected link.